The Pseudo - Marginal Approach for Efficient Monte Carlo Computations

نویسندگان

  • Gareth O. Roberts
  • G. O. ROBERTS
چکیده

We introduce a powerful and flexible MCMC algorithm for stochastic simulation. The method builds on a pseudo-marginal method originally introduced in [Genetics 164 (2003) 1139–1160], showing how algorithms which are approximations to an idealized marginal algorithm, can share the same marginal stationary distribution as the idealized method. Theoretical results are given describing the convergence properties of the proposed method, and simple numerical examples are given to illustrate the promising empirical characteristics of the technique. Interesting comparisons with a more obvious, but inexact, Monte Carlo approximation to the marginal algorithm, are also given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Monte Carlo Simulation in the Assessment of European Call Options

In this paper, the pricing of a European call option on the underlying asset is performed by using a Monte Carlo method, one of the powerful simulation methods, where the price development of the asset is simulated and value of the claim is computed in terms of an expected value. The proposed approach, applied in Monte Carlo simulation, is based on the Black-Scholes equation which generally def...

متن کامل

Metamodel for Efficient Estimation of Capacity-Fade Uncertainty in Li-Ion Batteries for Electric Vehicles

This paper presents an efficient method for estimating capacity-fade uncertainty in lithium-ion batteries (LIBs) in order to integrate them into the battery-management system (BMS) of electric vehicles, which requires simple and inexpensive computation for successful application. The study uses the pseudo-two-dimensional (P2D) electrochemical model, which simulates the battery state by solving ...

متن کامل

Pseudo-Marginal Slice Sampling

Markov chain Monte Carlo (MCMC) methods asymptotically sample from complex probability distributions. The pseudo-marginal MCMC framework only requires an unbiased estimator of the unnormalized probability distribution function to construct a Markov chain. However, the resulting chains are harder to tune to a target distribution than conventional MCMC, and the types of updates available are limi...

متن کامل

A Reliability Approach on Redesigning the Warehouses in Supply Chain with Uncertain Parameters via Integrated Monte Carlo Simulation and Tuned Artificial Neural Network

In this paper, a reliability approach on reconfiguration decisions in a supply chain network is studied based on coupling the simulation concepts and artificial neural network. In other words, due to the limited budget for warehouse relocation in a supply chain, the failure probability is assessed for determining the robust decision for future supply chain configuration. Traditional solving ...

متن کامل

Marginal sequential Monte Carlo for doubly intractable models

Bayesian inference for models that have an intractable partition function is known as a doubly intractable problem, where standard Monte Carlo methods are not applicable. The past decade has seen the development of auxiliary variable Monte Carlo techniques (Møller et al., 2006; Murray et al., 2006) for tackling this problem; these approaches being members of the more general class of pseudo-mar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009